3. THE HIGH MOUND:

INTRODUCTION AND SURFACE COLLECTION

Marilyn Kelly-Buccellati

3.1 Introduction

At the beginning of the first season of soundings in Mozan we undertook a systematic surface collection from all areas of the high mound. Since we had no record of previous work at the site this was particularly useful in order to determine the range of chronological periods represented and their relative strengths. The surface collection on the high mound was the first stage of a wider research design which included the collection of surface material from the outer city of Mozan as well as from the other mounds in the vicinity of Amuda (see below Chapters 4 and 8).

It was decided in the interest of the first season of excavation that a short period of survey work would precede the excavation. Since the time was limited we opted for a sampling strategy which would cover the entire surface of the high mound without concentrating on any specific sector. The mound was divided into sixteen areas along topographic lines and sherds were collected according to these divisions (Figure 4). The topography of the mound is particularly helpful in this regard. The southern two thirds have a configuration consisting of five prominent rises or ridges encircling a lower and flatter central area which had almost no sherds on its surface. The northern third of the high mound contains only one higher elevation on the north-west and an almost separate mound on the northeast which is partially cut off by two deep gullies on the east and west. Around the entire high mound are traces of a city wall which makes the edges of the high mound fairly steep and a clearly recognizable boundary for the survey.

Feature sherds, decorated sherds, and in some cases body sherds were collected as part of the ceramic survey; the resulting sample that was analyzed totaled 1500 sherds. The surface of the mound is moderately covered with sherds but the collection was made difficult by the overall plant cover. In three areas the mound has modern cemeteries; sometimes, sherds are used in graves as a kind of covering, but they seem to be gathered from the viewpoint of size rather than any other criterion. The amount to be collected by members of our team from the area assigned to them was left to the discretion of the collector with the instructions given to include a representative sample of feature and decorated sherds along with body sherds from wares which were not represented in the feature sherds. This presence-absence sampling procedure is therefore somewhat biased in favor of the decorated and more colorful sherds (such as Metallic ware) on the surface of the site and tends to downplay the relative importance of the plain buff varieties, especially in those areas with many body sherds. Since the buff wares outside of a more defined archaeological context are notoriously difficult to date even in areas where the ceramics are better known than they are in the Amuda area, it was thought that stressing their collection and analysis at the cost of many more days of work would not be worth the effort at this time, especially since typological identification was to remain uncertain before the results of the excavations could help us date these plain buff wares.

3.2 Distributional patterns

Aside from the few Islamic sherds found on the surface of the high mound (two sherds), the latest ceramics were four small Nuzi ware sherds (M1 43-44; the number given in the drawings next to the body sherds is the height of the sherd). The latest important concentration was of painted Habur ware both in its finer early variety and in its thicker and larger later shapes (M1 24-32). Sherds of Khabur ware were distributed all over the surface of the mound but were found in higher concentrations near the highest part of the mound on the western side (Figure 4; these maps show the relative strength of distribution by the size of the dots, with the larger dots indicating that the majority of the lots in this area had over 8 sherds of that particular time period).

Late third millennium pottery, characterized by a green-buff color and decorated with incised bands and applied rope designs on large or medium jars and bowls (M1 21-23), was also distributed all over the surface. Heavier concentrations of this type of pottery were present on part of the northeast and on the west (Fig. 4); this ware was also found stratified in Area B1. Pottery with this type of decoration is dated at Brak from the Sargonid and Ur III periods (Mallowan 1947 Plates LXV:7, LXVI: 15,16, LXVIII: 14). A sherd with a snake applied to its surface (M1 45) is similar to the snake on an Ur III vessel from Brak (Ibid. Plate LXX: 1; see also Tell Chuera, Kühne 1976 Plate 27 and Tell Taya, Reade 1968 Plate LXXXVI:24). Sherds from small Simple ware (M1 16, 18-20) and Metallic ware vessels (M1 9-15) dating to the mid third millennium appeared in all areas of the mound but larger concentrations of Metallic ware were found toward the center and the southeastern portions of the site (Figure 4). A Painted Simple ware goblet was given to us when we first visited the site (M1 17). Two Early Transcaucasian sherds (M1 40, 41) were collected in the surface survey and one also came from the excavations in the area of the city wall. Incised Ninevite V pottery (M1 4-5,7-8) was not found in such large amounts as the other third millennium wares and not scattered as widely; in fact these sherds were rare (10 sherds with the highest concentration on the northwestern portion of the mound, Fig. 4; this map only shows the distribution but does not indicate relative strength since there were so few sherds collected). This small number of Ninevite V sherds on the surface however may not be as indicative

as the sherds from later third millennium wares because Ninevite V sherds, on Mozan at least, were quite small in size and difficult therefore to spot on the surface. One indication that the Ninevite V period occupation on Mozan may be more important than our surface collection seems to indicate is the fact that this pottery was found mixed in with later material in all our soundings, perhaps because it was so prevalent on the ancient surface. Only one Ninevite V painted sherd was found (M1 6) and none was mixed in with the later excavated pottery.

Along with these third millennium wares there were scattered all over the site numerous sherds of Pebble Tempered ware. This ware is found at a number of sites in northern Syria including Chuera (Kühne 1976 pp. 99ff.), Brak (Fielden 1977 pp. 248-49) and Harran (Prag 1968 p. 83 and fn. 81 for references to both Harran and other sites). At Mozan it also occurs with triangular lugs at the rim. From periods earlier than the third millennium we have only a few Halaf painted sherds from the High Mound and Outer City (M1 1-3).

3.3 Conclusions

From this preliminary survey it appears that the largest extent of occupation on the High Mound occurred during the mid and late third millennium. This is all the more striking since this time period produced a preponderance of the plain buff wares which our preliminary collection would be biased against. In the case of the Simple ware, which is buff to graybuff, there is also the added disadvantage that it is usually made into small shapes. In addition Simple ware, because of its high firing and thin body walls, has a tendency to break into small sherds. As a consequence of these factors it can be expected that the distributional importance of these wares is underestimated rather than exaggerated in our sample. The next important concentration of pottery occurs in the beginning of the second millennium with the presence of Khabur ware. These distributional patterns confirmed our first impression on visiting the site that the mound in its present topography was primarily inhabited in the mid and late third millennium with a subsequent, smaller Old Babylonian occupation on the top. The existence of only four Nuzi period sherds on the surface is significant since such a limited quantity seems to point to only a limited use of the mound in this period.

A possible fourth millennium presence on Mozan is indicated by only three items: one sherd excavated near the city wall of Uruk gray ware; another of this same ware found on the surface of the High Mound on the west (M1 42) and a clay cone fragment also from the surface of the High Mound. Halaf sherds presented no clear distributional patterns; several came from the mound surface (M1 2,3), one from the excavation (Area B) but quite near the surface and some from the Outer City to the south of the High Mound (M1 1).

3.4 Mozan ware descriptions

For the sake of convenience the list below combines a description of the wares from both the surface survey and the excavations on the mound.

BR - Brick Red slipped ware. Sometimes black in section (very low-fired). Chaff tempered, perhaps with some sand. The color may also vary to brown.

3. The High Mound: Introduction and Surface Collection

CH — Chaff Tempered ware. Found in large vessels, medium fired with a large amount of chaff on the interior and exterior. The color varies from orange buff to a quite bright red. Some examples exhibit signs of secondary burning.

ETC — Early Transcaucasian ware. Examples occur in red, black or gray-brown, but never two colors, with chaff and sand temper. They are medium fired and range in thickness from .5 to 1.5 cm.

H — Khabur ware. Red or brown painted on buff to red clay, with pebble and chaff temper. The larger and thicker shapes contain more chaff, with the small, fine shapes being earlier in date. Decorative patterns include lines and hatched triangles. Khabur ware occurs in a variety of forms, ranging from fine small shapes to large shapes with a great amount of chaff temper. Some shapes can have ridges and rope designs with paint (these are transitional between the late 3rd millennium and Khabur ware).

INC — *Incised ware*. Incised decoration occurs on buff to green sherds which are 1.0 cm. thick or thicker. The incised decoration is found in patterns of wavy parallel lines or straight parallel lines on the shoulder of the vessel, and may occur in combination with a rope design. This ware is found in late third millennium strata.

M — Metallic ware. Mostly dark gray with shades of lighter gray and orange. The sherds contain very little temper, if any, and are very highly fired. They range in thickness from .5 cm. to 1.5cm.

NI - Ninevite V ware. Buff and gray, mostly sand tempered with the possible addition of very fine chaff. This ware occurs in painted or incised examples.

NU - Nuzi ware. Buff ware, sand tempered, with perhaps some very fine chaff added. Decoration is in brown and white paint, applied first in wide bands of brown and then with a brush in thin white bands or dots.

P — Pebble tempered ware. Brick red to brown in color, with many small pebbles as temper, giving the sherds a very friable appearance. Pebbles are visible on both the surface and in section. The thicker shapes are black in section. Some sherds exhibit a secondary surface firing indicating that these vessels were used for cooking. Many examples of hole mouth jars and some with triangular lugs on the rim occur; similar examples are found at Chuera, Harran and Brak (see Fielden 1977, pp. 248-49 for references). Vessels in this ware were burnished on the exterior extending over the rim, and to a lesser extent on the interior.

R — Rough ware. The thicker variety of these vessels has plaster on the interior, sometimes applied in three or more coats. This interior plaster is either white or a plum red. There are cases where the plum red has run over onto the exterior and dripped down the side. The temper consists of a large amount of chaff with large inclusions which may be ground up sherds. All examples found were well fired but this may be due to refiring in the destruction level in which they were found (K1 Feature 16, see below). In some examples the interior plaster was burned a reddish orange by the fire. Vessels of this ware come mostly in very thick shapes, ca. 2.5 cm. thick. These vessels are slab made and are constructed in layers which can be seen in section. Cracks caused by the drying of the vessel are often seen on the exterior. The plastered vessels have two basic shapes: jars with outturned rims and deep bowls with squared rims. Some of the sherds are perfectly flat while the majority are rounded showing that they came from large jars. The flat ones may come from storage vats or may be the flat base sherds of the larger vessels. One such example of a flat base

46

showed the thickness of the lower body wall to be 2.8 cm, with the wall of the base portion being only 2 cm. thick. There also seems to be a thinner variety of this ware represented by sherds with thinner walls (ca. 1.3 cm.) and more curvature in the body walls.

RS — Reserved Slip ware. Buff, some examples with strong wheel marks. A small amount of plant temper is visible on the surface; some sand temper present. There are very few examples of this ware.

S — Simple ware. Greenish buff in color, highly fired and sand tempered. The temper contains no chaff. Some examples have a corrugated surface. The Simple ware shapes are small and thin walled, with flat, pointed or ring bases. The flat bases are rounded on the edges or spherical. One Painted Simple ware goblet came from the surface (M1 17).

WS - Wet Smoothed ware. Light red to buff in color. The finest examples of WS ware have only sand temper and are less than 1.0 cm. thick. Most of the WS ware is thicker and has more temper in it. Larger vessels have some plant temper and are 1.0 to 1.5 cm. in thickness. This ware is related to the smaller, finer Simple ware and is included in the Simple ware category in some publications. Vessels of this ware may be plant wiped inside and some have noticeable wheel marks on the exterior. In 1984 a body sherd of this ware was found with an EDII seal impression rolled on the shoulder (see below M1 167).

3.3 A note on mapping — Stephen M. Hughey

The specific mapping objective for Tell Mozan was to perform the necessary field survey to produce a standard topographic map suitable for publication on a 1:1000 scale with a one meter contour interval. Because of time constraints, only one day was available before the start of actual excavations. Implicit in even a topographical survey is the requirement that the survey be retraceable by another competent surveyor. In our particular case, neither the nature of the archaeological site nor the materials on hand would allow the emplacement of large monuments of concrete and iron of the kind that would be easily located by sight. Also, experience to date had shown that anything easily identified as metal or wood is collected as refuse and "recycled" by the local people. It was decided that retraceability would have to depend on the accuracy of the survey and on the recovery of large nails set at each topographic control point. It was supposed that these could be quickly set flush by a fourth member of the survey party as each "shot" was taken. Most of them would presumably be overlooked by the local people and be recovered as needed in future seasons with a ferrous metal detector. The horizontal and vertical control could then be perpetuated without the personnel or equipment required to establish it. The disturbance of the surface would be kept to a minimum and those points needed for mapping control in each area could be replaced by something more substantial as needed.

The details of the field work can be summarized as follows: An area of 18.4 hectares was surveyed. A total of 112 control points were "shot." The party consisted of 4 people: S. Hughey on the instrument (Lietz SDM3E); B. Pritzkat on prism support rod; G. Buccellati on notes; F.A. Buccellati on monument emplacement. The survey took a total of one half day. As no elevation was availablefor the washer found in a concrete monument below a metal tripod (taken to be a geodetic control point) an elevation for it was interpolated as

500 meters from a topographic map of Syria with a 500 meter contour interval.¹ As for horizontal control, a coordinate value was chosen for the found concrete monument that would conveniently keep the coordinate values on the tell to three digits left of the decimal point.

The basis of bearings for the survey is from magnetic north as observed in the morning of the day of the survey from three stations along the first leg of the traverse. Magnetic north was preferred over true north so that maps could be quickly oriented with a compass. Unfortunately, time this season did not allow solar or polar observations for true north.

Angular closure for the 8 station traverse was 2 minutes. The total traverse distance was 1931.31 meters with a closure distance of 0.243 meters, or about one part in ten thousand. The compass rule was used to balance eastings and northings. The vertical closure based on trig levels was also well within allowable limits and adjusted out. Since there was no time for the standard practice of running a differential level circuit of the traverse stations, each station was "shot" twice: once on foresight and once on backsight. The plotting of the control points, the interpolation of the contours and most of the drafting of the final map was done in California by B. Pritzkat under the supervision of S. Hughey. Although track was kept of time required to produce it, this work would typically require a single survey draftsperson 8-24 office hours depending on skill and tools at hand.

The outer perimeter of the area surveyed is delineated by the control points indicated on the map (Fig. 5). The total area enclosed by these points is 18.3514 hectares.

¹ In our record, as well as in this publication, elevations are regularly given in centimeters below the 500 m. mark, omitting both the decimal point and the initial digit 4, since *all* absolute elevations are within the 400 m. range. Thus, for instance, elevation 8107 stands for m. 481.07. [G. B. and M. K.-B.]